If it's not what You are looking for type in the equation solver your own equation and let us solve it.
482x+100x^2-5=0
a = 100; b = 482; c = -5;
Δ = b2-4ac
Δ = 4822-4·100·(-5)
Δ = 234324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{234324}=\sqrt{36*6509}=\sqrt{36}*\sqrt{6509}=6\sqrt{6509}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(482)-6\sqrt{6509}}{2*100}=\frac{-482-6\sqrt{6509}}{200} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(482)+6\sqrt{6509}}{2*100}=\frac{-482+6\sqrt{6509}}{200} $
| -6+3x=-20+8x | | 2*b+4b-3b=9 | | 3x-2x=4+3 | | 6*n=42*n | | 3/x+12=17 | | G(x)=3^0 | | G(x)=3^-1 | | m=4.6.8.9 | | g=4.3.5.3.5.5.6.5 | | n=2.3.3.5.4 | | b-9.7=13.3.23.24.25 | | (8x+4)=(9x-11 | | Y=2x+450 | | Y=2x+4500 | | 21-1r=-87+2r | | 2x+5=25x= | | 2x-10=144 | | L=-42+d | | 3x(2x4)=3x | | Y=18+y | | 12x-(2x-8)=18 | | 7=-8y+-23 | | 10^3^x=4.333 | | 8+y+10+3+5=180 | | 52900=1.9x+21 | | 28-24=4v-6v | | 81=27^-x+3 | | m-48=7.4 | | s+1.3=4.63 | | -2=-8-2y | | 3p-6=8p+2 | | 8p-9=4p+3 |